历史:
1920年,捷克作家卡罗·凯佩克(Karel Capek): 《罗素姆的万能劳工(Rossum’s UniversalRobots) 》
第一次提出“Robot”,中文译做“机器人”。
40年代,美国橡树岭国家实验室研制出搬运核原料的遥控式主从机械手。
50年代初,美国MIT发展的数控技术为机器人在控制方面做了准备。
1961年Unimation公司生产第一台工业机器人,取名为“Unimate”。
1962年美国机械与铸造公司(AMF)试制出“沃萨特兰(Versatran)”工业机器人,意思是多用途搬运机器人。
60年代到70年代:机器人技术获得巨大发展。
80年代,计算机技术的发展推动了机器人技术的发展,使机器人的应用达到了新的水平。
90年代,由于人工智能、计算机科学和传感器科学的迅速发展,使得机器人的研究在高水平上进行。
进入21世纪,未来的机器人技术将向着具有行走能力、对环境自主性强、具有多种感觉能力的智能机器人的方向发展。
机器人学
机器人学是关于机器人技术的一门综合性学科。包括力学、机械学、规划系统、控制论、传感技术、计算机学、电子学以及人工智能。
美国机器人专家W·E·Snyder曾对工科大学生说:“尽管只有少数人能成为机器人的设计者,但几乎所有的人都会成为机器人的使用者,其中很多人将作出购买和应用机器人的决策。”
前景:
虽然形形色色的机器人在各种场合有条不紊地做着不同的工作目前还只是科幻电影中的场景,但是,随着近年来实用型家庭机器人研究的不断深入,有人预言,若干年后,此类机器人将如同现在的个人电脑一样普及。人们可以利用它们来处理家庭中繁重、琐碎和重复性的工作,比如打扫卫生、修剪草坪等等。
擦玻璃窗这个活儿,恐怕没有多少人愿意干。巴西圣保罗市著名的阿涅比会展中心,其主展馆是一个钢架结构建筑,为了加强采光效果,建筑师将拱形房顶设计成全玻璃结构。如此一来,要想保持总面积近2万平米玻璃屋顶的清洁,可成了一件令人头痛的问题。每逢雷雨过后,会展中心工程部就不得不聘请7、8名专业清洁工干上一周时间,费时费力。今年初,工程部特地从德国订购了两个专业清洁机器人,代替工人来完成这项麻烦的工作。这两个擦玻璃自动机悬吊在房脊上,沿着房顶的一根根钢架灵巧地上下穿梭,独立作业,仅用一天时间就能完成全部清洁工作。
美国麻省理工学院计算机科学和人工智能实验室主任布鲁克斯教授认为,若干年后,机器人在人们日常生活中的应用将会类似于今天的计算机。他在专业杂志《技术评论》上撰文:“我坚信,机器人今天所处的发展位置就像计算机1978年所处的位置一样,不久的将来,家用型机器人就会进入普通百姓家,它们会帮助主人打扫房间、清洁地板、修理草坪,需要时还可以当门卫看家。”巴西圣保罗大学自动化研究所负责人卡洛斯也表示,大约10年之内,兼多种任务于一身的家用全能机器人就将开发成熟,投入成批生产。
随着全球人口老龄化趋势的不断加快,家用型机器人将来的主要工作之一就是照顾老人。德国一家研究所的科研人员已经开发出一种家用机器人。它不光可以帮主人做简单的家务,如准备餐具、打扫卫生等,而且可以搀扶主人走路,提醒主人按时服药,并能把掉到地上的物体拣拾起来。
对此,卡洛斯表示:“此类机器人具有的传递物体的功能可以帮助某些人,比如说老年人或者残疾人保持生活自理能力,但机器人绝对不会完全替代真人进行护理工作。”他指出,目前所设计出来的机器人只能通过预先设定好的程序进行工作,面对复杂情况,它们不具备识别能力,更不会相应地调整自己的行为。
目前,全世界工程师和科学家仍在深入研究机器人。位于加利福尼亚的美国航天局喷气推进试验所遥控机器研究和应用小组的工程技术人员正在致力于开发有关程序,使机器人具备与人类思维过程相类似的人工智能。
项目负责人尤因博士指出,目前,操控机器人有两种截然相反的方法:“协商控制”和“反应控制”。相对来说,前者是一种传统的具有优势的控制方式,它以数学精度来构建路线和行为样式,使机器人的行动形成一整套步骤。依次执行这些步骤,机器人就能达到活动的目的。这就好像是蒙着眼睛的海盗在寻找埋藏的宝藏:从A点出发,向北走36步,然后向东走12步,再往东北方向走4步到达X点,找到宝藏。
但这种方式的缺陷是,如果因为某种原因干扰了机器人的进程(比如说,路线错误或者缺少行动细节),机器人就必须被迫停止,接受路线和行为计划的重新编订。“重订计划”如果多次反复进行,其花费将是相当昂贵的。此外,如果机器人在行进过程中碰到不可预料的障碍,如岩石或者洞坑,为了保证机器人的安全,还需要调入备用程序来取消本次行动。
“灵活控制”方式则摆脱掉路线和计划编排,将重点放在现场周围环境的观察上,就好比是这样:如果前方有岩石,那么减速;如果发现地里有某一物体X,那么挖寻。
同时,尤因博士还一直关注研究“行为基础控制”。这是一种与“反应控制”相一致的控制方式。“行为基础控制”允许机器人在实时观察不可预料的、不断变化环境的同时,仍能遵循计划编排。它允许机器人有很大的灵活性,像人一样通过改变计划去适应变化着的环境。在宇宙空间探索中,这种控制方式显示出了许多优势,比如减少由于从地球上操作远距离机器人所产生的通讯迟滞。
在谈到机器人的明天时,尤因博士说,今天我们所做的一切,并不意味着不远的将来机器人就能像人一样思考,但通过人工智能的研究,它们能够变得更容易沟通、更具独立性、更加高效。